О режимах распределения внимания при усвоении визуальных пространственных закономерностей
DOI:
https://doi.org/10.54359/ps.v16i89.1398Ключевые слова:
статистическое научение, зрительное внимание, усвоение пространственных закономерностей, восприятие зрительных ансамблей, контекстная подсказкаАннотация
Мы обладаем способностью неосознанно выделять и выучивать закономерности расположения отдельных предметов в окружающей среде. Но какие именно когнитивные механизмы обеспечивают такую возможность? Усвоение пространственных закономерностей относится к области визуального статистического научения и обеспечивается сложным взаимодействием различных когнитивных структур. Научение пространственным паттернам происходит непреднамеренно в процессе решения различных задач, подразумевающих обработку информации о множестве объектов. Таким образом, визуальное пространственное статистическое научение представляется тесно связанным с особенностями распределения внимания. Целью предлагаемой работы является рассмотрение существующих эмпирических результатов, касающихся зависимости научения от распределения внимания при решении той или иной задачи. В статье описаны основные экспериментальные схемы, применяемые в исследованиях статистического пространственного научения. Проанализированы данные о роли фокусированного и распределенного, глобального и локального режимов внимания в визуальном статистическом научении. Рассматривается связь статистического научения и восприятия зрительных ансамблей, а также статистического научения и глобального восприятия множества. В качестве одной из типичных для пространственного статистического научения ситуаций рассматривается феномен усвоения контекстной подсказки в задаче зрительного поиска. Сопоставляются эмпирические данные о роли режимов внимания в парадигме контекстной подсказки и исходном экспериментальном подходе в области пространственного статистического научения. В заключение обсуждаются основные проблемы статистического пространственного научения и возможные направления дальнейших исследований в этой области.
Скачивания
Литература
Tihonov R.V., Ammalajnen A.V., Moroshkina N.V. Mnogoobrazie metakognitivny`x chuvstv: razny`e fenomeny` ili razny`e terminy`? Vestnik Sankt-Peterburgskogo universiteta. Psixologiya i pedagogi-ka, 2018, 8(3), 214–242. DOI: 10.21638/11701/spbu16.2018.302. (In Russian)
Yakovlev A.Yu., Tyurina N.A., Utochkin I.S. Zritel'noe vospriyatie ansamblej: obzor issledovanij // Rossijskij zhurnal kognitivnoj nauki. 2020. T. 7. No 3. C. 4–24. DOI: 10.47010/20.3.1. http://www.cogjournal.ru. (In Russian)
Alvarez G.A. Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 2011, 15(3), 122–131. DOI: 10.1016/j.tics.2011.01.003.
Alvarez G.A., Oliva A. The representation of simple ensemble visual features outside the focus of attention. Psychological science, 2008, 19(4), 392–398. DOI: 10.1111/j.1467-9280.2008.02098.x.
Ariely D. Seeing sets: Representation by statistical properties. Psychological science, 2001, 12(2), 157–162. DOI: 10.1111/1467-9280.00327.
Baker N., Kellman P.J. Independent mechanisms for processing local contour features and global shape. Journal of Experimental Psychology: General, 2023, 152(5), 1502–1526. DOI: 10.1037/xge0001349.
Batterink L.J., Reber P.J., Neville H.J., Paller K.A. Implicit and explicit contributions to statistical learning. Journal of memory and language, 2015, 83, 62–78. DOI: 10.1016/j.jml.2015.04.004.
Bays B.C., Turk-Browne N.B., Seitz A.R. Dissociable behavioural outcomes of visual statistical learning. Visual Cognition, 2015, 23(9–10), 1072–1097. DOI: 10.1080/13506285.2016.1139647.
Chee M.W.L., Zheng H., Goh J.O.S., Park D., Sutton B.P. Brain structure in young and old East Asians and Westerners: comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 2011, 23(5), 1065–1079. DOI: 10.1162/jocn.2010.21513.
Chong S.C., Treisman A. Attentional spread in the statistical processing of visual displays. Perception and Psychophysics, 2005, 67(1), 1–13. DOI: 10.3758/BF03195009.
Chun M.M., JiangY. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 1998, 36, 28–71. DOI: 10.1006/cogp.1998.0681.
Cohen M.A., Dennett D. C., Kanwisher N. What is the bandwidth of perceptual experience? Trends in Cognitive Sciences, 2016, 20(5), 324-335. DOI: 10.1016/j.tics.2016.03.006.
Cock J., Meier B. Correlation and response relevance in sequence learning. Psychological Research, 2013, 77, 449–462. DOI: 10.1007/s00426-012-0444-x.
Conci M., Sun L., Müller H.J. Contextual remapping in visual search after predictable target-location changes. Psychological Research, 2011, 75(4), 279–289. DOI: 10.1007/s00426-010-0306-3.
Conway C.M. How does the brain learn environmental structure? Ten core principles for understand-ing the neurocognitive mechanisms of statistical learning. Neuroscience and Biobehavioral Reviews, 2020, 112, 279-299. DOI: 10.1016/j.neubiorev.2020.01.032.
Conway C.M., Christiansen M.H. Modality-constrained statistical learning of tactile, visual, and audi-tory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2005, 31, 24–39. DOI: 10.1037/0278-7393.31.1.24.
Conway C.M., Christiansen M.H. Seeing and hearing in space and time: effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 2009, 21 (4), 561–580. DOI: 10.1080/09541440802097951.
Durrant S.J., Cairney S.A., Lewis P.A. Cross-modal transfer of statistical information benefits from sleep. Cortex; a journal devoted to the study of the nervous system and behavior, 2016, 78, 85–99. DOI: 10.1016/j.cortex.2016.02.011.
Emberson L.L., Conway C.M., Christiansen M.H. Timing is everything: changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. Quarterly Journal of Experi-mental Psychology, 2011, 64 (5), 1021–1040. DOI: 10.1080/17470218.2010.538972.
Endress A.D., Mehler J. The surprising power of statistical learning: when fragment knowledge leads to false memories of unheard words. Journal of Memory and Language, 2009, 60 (3), 351–367. DOI: 10.1016/j.jml.2008.10.003.
Fiser J., Aslin R.N. Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 2001, 12, 499–504. DOI: 10.1111/1467-9280.00392.
Fiser J., Aslin R.N. Statistical learning of higher-order temporal structure from visual shape sequenc-es. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2002, 28(3), 458–467. DOI: 10.1037/0278-7393.28.3.458.
Fiser J., Aslin R.N. Encoding multielement scenes: statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 2005, 134(4), 521. DOI: 10.1037/0096-3445.134.4.521.
Franco A., Destrebecqz A. Chunking or not chunking? How do we find words in artificial language learning? Advances in Cognitive Psychology, 2012, 8 (2), 144–154. DOI:10.5709/acp-0111-3.
Frost R., Armstrong B.C., Siegelman N., Christiansen M.H. Domain generality versus modality spec-ificity: The paradox of statistical learning. Trends in Cognitive Sciences, 2015, 19(3), 117–125. DOI: 10.1016/j.tics.2014.12.010.
Frost R., Armstrong B.C., Christiansen M.H. Statistical learning research: A critical review and pos-sible new directions. Psychological Bulletin, 2019, 145(12), 1128. DOI: 10.1037/bul0000210.
Geyer T., Zehetleitner M., Müller H.J. Contextual cueing of pop-out visual search: When context guides the deployment of attention. Journal of Vision, 2010, 10(5), 20–20. DOI: 10.1167/10.5.20.
Goujon A., Didierjean A., Thorpe S. Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 2015, 19(9), 524–533. DOI: 10.1016/j.tics.2015.07.009.
Hall M.G., Mattingley J.B., Dux P.E. Distinct contributions of attention and working memory to vis-ual statistical learning and ensemble processing. Journal of Experimental Psychology: Human Percep-tion and Performance, 2015, 41(4), 1112. DOI: 10.1037/xhp0000069.
Herff S.A., Zhen S., Yu R., Agres K.R. Age-dependent statistical learning trajectories reveal differ-ences in information weighting. Psychology and Aging, 2020, 35(8), 1090–1104. DOI: 10.1037/pag0000567.
Himberger K.D., Finn A.S., Honey C.J. On the automaticity of visual statistical learning. bioRxiv, 2022, 07. DOI: 10.1101/2022.07.04.498716.
Jiang Y., Chun M.M. Selective attention modulates implicit learning. The Quarterly Journal of Exper-imental Psychology: Section A, 2001, 54(4), 1105–1124. DOI: 10.1080/713756001.
Jiang Y., Leung A.W. Implicit learning of ignored visual context. Psychonomic Bulletin and Review, 2005, 12, 100–106. DOI: 10.3758/BF03196353.
Jiang Y., Song J.H. Spatial context learning in visual search and change detection. Perception and Psychophysics, 2005, 67(7), 1128–1139. DOI: 10.3758/BF03193546.
Jiang Y.V., Swallow K.M. Spatial reference frame of incidentally learned attention. Cognition, 2013, 126(3), 378–390. DOI: 10.1016/j.cognition.2012.10.011.
Lee S.W., O’Doherty J.P., Shimojo S. Neural computations mediating one-shot learning in the human brain. PLoS biology, 2015, 13(4), e1002137. DOI: 10.1371/journal.pbio.1002137.
Lengyel G., Nagy M., Fiser J. Statistically defined visual chunks engage object-based attention. Na-ture communications, 2021, 12(1), 1–12. DOI: 10.1038/s41467-020-20589-z.
Li X., Zhao X., Shi W., Lu Y., Conway C.M. Lack of Cross-Modal Effects in Dual-Modality Implicit Statistical Learning. Frontiers in Psychology, 2018, 9, 146. DOI: 10.1016/j.cortex.2016.02.011.
Lleras A., Von Muhlenen A. Spatial context and top-down strategies in visual search. Spatial Vision, 2004, 17(4), 465–482. DOI: 10.1163/1568568041920113.
Machner B., Braun L., Imholz J., Koch P.J., Münte T.F., Helmchen C., Sprenger A. Resting-State Functional Connectivity in the Dorsal Attention Network Relates to Behavioral Performance in Spatial Attention Tasks and May Show Task-Related Adaptation. Frontiers in Human Neuroscience, 2022, 15, 757128. DOI: 10.3389/fnhum.2021.757128.
McKone E., Aimola Davies A., Fernando D., Aalders R., Leung H., Wickramariyaratne T., Platow, M.J. Asia has the global advantage: Race and visual attention. Vision Research, 2010, 50(16), 1540–1549. DOI: 10.1016/j.visres.2010.05.010.
Navon D. Forest before trees: The precedence of global features in visual perception. Cognitive Psy-chology, 1977, 9, 353-383. DOI: 10.1016/0010-0285(77)90012-3.
Newell B.R., Shanks D.R. Unconscious influences on decision making: A critical review. Behavioral and brain sciences, 2014, 37(1), 1-19. DOI: 10.1017/S0140525X12003214.
Nissen M.J., Bullemer P. Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 1987, 19(1), 1–32. DOI: 10.1016/0010-0285(87)90002-8.
Orbán G., Fiser J., Aslin R.N., Lengyel M. Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 2008, 105(7), 2745–2750. DOI: 10.1073/pnas.0708424105.
Palmer S.D., Hutson J., Mattys S.L. Statistical learning for speech segmentation: Age-related changes and underlying mechanisms. Psychology and Aging, 2018, 33(7), 1035–1044. DOI: 10.1037/pag0000292.
Perruchet P., Pacton S. Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 2006, 10, 233–238. DOI: 10.1016/j.tics.2006.03.006.
Ramey M.M., Henderson J.M., Yonelinas A.P. The spatial distribution of attention predicts familiari-ty strength during encoding and retrieval. Journal of Experimental Psychology: General, 2020, 149(11), 2046–2062. DOI: 10.1037/xge0000758.
Rausei V., Makovski T., Jiang Y.V. Attention dependency in implicit learning of repeated search con-text. Quarterly Journal of Experimental Psychology, 2007, 60(10), 1321–1328. DOI: 10.1080/17470210701515744.
Rutar D., de Wolff E., Kwisthout J., Hunnius S. Statistical learning mechanisms are flexible and can adapt to structural input properties. 2022. Available at SSRN 4027230. DOI: 10.21203/rs.3.rs-2402303/v1.
Saffran J.R., Aslin R.N., Newport E.L. Statistical learning by 8-month-old infants. Science, 1996, 274, 1926–1928. DOI: 10.1126/science.274.5294.1926.
Saffran J.R., Johnson E.K., Aslin R.N., Newport E.L. Statistical learning of tone sequences by human infants and adults. Cognition, 1999, 70(1), 27–52. DOI: 10.1016/S0010-0277(98)00075-4.
Santolin C., Saffran J. Constraints on Statistical Learning Across Species. Trends in Cognitive Sci-ences, 2017, 22. DOI: 10.1016/j.tics.2017.10.003.
Scott R.B., Dienes Z. The conscious, the unconscious, and familiarity. Journal of experimental psy-chology. Learning, Memory, and Cognition, 2008, 34(5), 1264–1288. DOI: 10.1037/a0012943.
Schwarb H., Schumacher E.H. Generalized lessons about sequence learning from the study of the se-rial reaction time task. Advances in Cognitive Psychology, 2012, 8(2), 165-178. DOI: 10.2478/v10053-008-0113-1.
Sekimoto T., Motoyoshi I. Ensemble perception without phenomenal awareness of elements. Scien-tific Reports, 2022, 12(1), 1-8. DOI: 10.1038/s41598-022-15850-y.
Stevens W.D., Buckner R.L., Schacter D.L. Correlated low-frequency BOLD fluctuations in the rest-ing human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 2010, 20(8), 1997-2006. DOI: 10.1093/cercor/bhp270.
Theeuwes J., Bogaerts L., van Moorselaar D. What to expect where and when: how statistical learn-ing drives visual selection. Trends in Cognitive Sciences, 2022, 26(10), 860-872. DOI: 10.1016/j.tics.2022.06.001.
Treisman A. How the deployment of attention determines what we see. Visual Cognition, 2006, 14(4-8), 411–443. DOI: 10.1080/13506280500195250.
Tummeltshammer K., Amso D., French R.M., Kirkham N.Z. Across space and time: Infants learn from backward and forward visual statistics. Developmental Science, 2017, 20(5), e12474. DOI:10.1111/desc.12474.
Turk-Browne N.B. Statistical learning and its consequences. The influence of attention, learning, and motivation on visual search. Springer, New York, NY, 2012. pp. 117-146. DOI: 10.1007/978-1-4614-4794-8_6.
Turk-Browne N.B., Jungé J., Scholl B.J. The automaticity of visual statistical learning. Journal of Ex-perimental Psychology: General, 2005, 134, 552–564. DOI: 10.1037/0096-3445.134.4.552.
Vickery T.J., Park S.H., Gupta J., Berryhill M.E. Tasks determine what is learned in visual statistical learning. Psychonomic Bulletin and Review, 2018, 25(5), 1847–1854. DOI: 10.3758/s13423-017-1405-6.
Wang W., Yonelinas A.P. Familiarity is related to conceptual implicit memory: An examination of individual differences. Psychonomic Bulletin and Review, 2012, 19, 1154–1164. DOI: 10.3758/s13423-012-0298-7.
Wierzchoń M., Asanowicz D., Paulewicz B., Cleeremans A. Subjective measures of consciousness in artificial grammar learning task. Consciousness and Cognition, 2012, 21(3), 1141-1153. DOI: 10.1016/j.concog.2012.05.012.
Whitney D., Yamanashi Leib A. Ensemble perception. Annual Review of Psychology, 2018, 69, 105-129. DOI: 10.1146/annurev-psych-010416-044232.
Yang Y., Coutinho M.V., Greene A.J., Hannula D.E. Contextual cueing is not flexible. Conscious-ness and Cognition, 2021, 93, 103164. DOI: 10.1016/j.concog.2021.103164.
Zang X., Assumpção L., Wu J., Xie X., Zinchenko A. Task-Irrelevant Context Learned Under Rapid Display Presentation: Selective Attention in Associative Blocking. Frontiers in Psychology, 2021, 12:675848. DOI: 10.3389/fpsyg.2021.675848.
Zhao J., Luo Y. Statistical regularities guide the spatial scale of attention. Attention, Perception, and Psychophysics, 2017, 79(1), 24-30. DOI: 10.3758/s13414-016-1233-1.
Zhao J., Ngo N., McKendrick R., Turk-Browne N.B. Mutual interference between statistical sum-mary perception and statistical learning. Psychological Science, 2011, 22(9), 1212-1219. DOI: 10.1177/0956797611419304.
Загрузки
Число просмотров
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2023 Татьяна Деева

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.