О режимах распределения внимания при усвоении визуальных пространственных закономерностей

Авторы

  • Татьяна Деева ФГБУН Институт психологии РАН, Москва, Россия

DOI:

https://doi.org/10.54359/ps.v16i89.1398

Ключевые слова:

статистическое научение, зрительное внимание, усвоение пространственных закономерностей, восприятие зрительных ансамблей, контекстная подсказка

Аннотация

Мы обладаем способностью неосознанно выделять и выучивать закономерности расположения отдельных предметов в окружающей среде. Но какие именно когнитивные механизмы обеспечивают такую возможность? Усвоение пространственных закономерностей относится к области визуального статистического научения и обеспечивается сложным взаимодействием различных когнитивных структур. Научение пространственным паттернам происходит непреднамеренно в процессе решения различных задач, подразумевающих обработку информации о множестве объектов. Таким образом, визуальное пространственное статистическое научение представляется тесно связанным с особенностями распределения внимания. Целью предлагаемой работы является рассмотрение существующих эмпирических результатов, касающихся зависимости научения от распределения внимания при решении той или иной задачи. В статье описаны основные экспериментальные схемы, применяемые в исследованиях статистического пространственного научения. Проанализированы данные о роли фокусированного и распределенного, глобального и локального режимов внимания в визуальном статистическом научении. Рассматривается связь статистического научения и восприятия зрительных ансамблей, а также статистического научения и глобального восприятия множества. В качестве одной из типичных для пространственного статистического научения ситуаций рассматривается феномен усвоения контекстной подсказки в задаче зрительного поиска. Сопоставляются эмпирические данные о роли режимов внимания в парадигме контекстной подсказки и исходном экспериментальном подходе в области пространственного статистического научения. В заключение обсуждаются основные проблемы статистического пространственного научения и возможные направления дальнейших исследований в этой области.

Скачивания

Данные скачивания пока недоступны.

Автор

Татьяна Деева, ФГБУН Институт психологии РАН, Москва, Россия

Соискатель ученой степени кандидата наук, ФГБУН Институт психологии Российской академии наук, ул. Ярославская, 13, 129366 Москва, Россия.

Литература

Tihonov R.V., Ammalajnen A.V., Moroshkina N.V. Mnogoobrazie metakognitivny`x chuvstv: razny`e fenomeny` ili razny`e terminy`? Vestnik Sankt-Peterburgskogo universiteta. Psixologiya i pedagogi-ka, 2018, 8(3), 214–242. DOI: 10.21638/11701/spbu16.2018.302. (In Russian)

Yakovlev A.Yu., Tyurina N.A., Utochkin I.S. Zritel'noe vospriyatie ansamblej: obzor issledovanij // Rossijskij zhurnal kognitivnoj nauki. 2020. T. 7. No 3. C. 4–24. DOI: 10.47010/20.3.1. http://www.cogjournal.ru. (In Russian)

Alvarez G.A. Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 2011, 15(3), 122–131. DOI: 10.1016/j.tics.2011.01.003.

Alvarez G.A., Oliva A. The representation of simple ensemble visual features outside the focus of attention. Psychological science, 2008, 19(4), 392–398. DOI: 10.1111/j.1467-9280.2008.02098.x.

Ariely D. Seeing sets: Representation by statistical properties. Psychological science, 2001, 12(2), 157–162. DOI: 10.1111/1467-9280.00327.

Baker N., Kellman P.J. Independent mechanisms for processing local contour features and global shape. Journal of Experimental Psychology: General, 2023, 152(5), 1502–1526. DOI: 10.1037/xge0001349.

Batterink L.J., Reber P.J., Neville H.J., Paller K.A. Implicit and explicit contributions to statistical learning. Journal of memory and language, 2015, 83, 62–78. DOI: 10.1016/j.jml.2015.04.004.

Bays B.C., Turk-Browne N.B., Seitz A.R. Dissociable behavioural outcomes of visual statistical learning. Visual Cognition, 2015, 23(9–10), 1072–1097. DOI: 10.1080/13506285.2016.1139647.

Chee M.W.L., Zheng H., Goh J.O.S., Park D., Sutton B.P. Brain structure in young and old East Asians and Westerners: comparisons of structural volume and cortical thickness. Journal of Cognitive Neuroscience, 2011, 23(5), 1065–1079. DOI: 10.1162/jocn.2010.21513.

Chong S.C., Treisman A. Attentional spread in the statistical processing of visual displays. Perception and Psychophysics, 2005, 67(1), 1–13. DOI: 10.3758/BF03195009.

Chun M.M., JiangY. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 1998, 36, 28–71. DOI: 10.1006/cogp.1998.0681.

Cohen M.A., Dennett D. C., Kanwisher N. What is the bandwidth of perceptual experience? Trends in Cognitive Sciences, 2016, 20(5), 324-335. DOI: 10.1016/j.tics.2016.03.006.

Cock J., Meier B. Correlation and response relevance in sequence learning. Psychological Research, 2013, 77, 449–462. DOI: 10.1007/s00426-012-0444-x.

Conci M., Sun L., Müller H.J. Contextual remapping in visual search after predictable target-location changes. Psychological Research, 2011, 75(4), 279–289. DOI: 10.1007/s00426-010-0306-3.

Conway C.M. How does the brain learn environmental structure? Ten core principles for understand-ing the neurocognitive mechanisms of statistical learning. Neuroscience and Biobehavioral Reviews, 2020, 112, 279-299. DOI: 10.1016/j.neubiorev.2020.01.032.

Conway C.M., Christiansen M.H. Modality-constrained statistical learning of tactile, visual, and audi-tory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2005, 31, 24–39. DOI: 10.1037/0278-7393.31.1.24.

Conway C.M., Christiansen M.H. Seeing and hearing in space and time: effects of modality and presentation rate on implicit statistical learning. European Journal of Cognitive Psychology, 2009, 21 (4), 561–580. DOI: 10.1080/09541440802097951.

Durrant S.J., Cairney S.A., Lewis P.A. Cross-modal transfer of statistical information benefits from sleep. Cortex; a journal devoted to the study of the nervous system and behavior, 2016, 78, 85–99. DOI: 10.1016/j.cortex.2016.02.011.

Emberson L.L., Conway C.M., Christiansen M.H. Timing is everything: changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. Quarterly Journal of Experi-mental Psychology, 2011, 64 (5), 1021–1040. DOI: 10.1080/17470218.2010.538972.

Endress A.D., Mehler J. The surprising power of statistical learning: when fragment knowledge leads to false memories of unheard words. Journal of Memory and Language, 2009, 60 (3), 351–367. DOI: 10.1016/j.jml.2008.10.003.

Fiser J., Aslin R.N. Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 2001, 12, 499–504. DOI: 10.1111/1467-9280.00392.

Fiser J., Aslin R.N. Statistical learning of higher-order temporal structure from visual shape sequenc-es. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2002, 28(3), 458–467. DOI: 10.1037/0278-7393.28.3.458.

Fiser J., Aslin R.N. Encoding multielement scenes: statistical learning of visual feature hierarchies. Journal of Experimental Psychology: General, 2005, 134(4), 521. DOI: 10.1037/0096-3445.134.4.521.

Franco A., Destrebecqz A. Chunking or not chunking? How do we find words in artificial language learning? Advances in Cognitive Psychology, 2012, 8 (2), 144–154. DOI:10.5709/acp-0111-3.

Frost R., Armstrong B.C., Siegelman N., Christiansen M.H. Domain generality versus modality spec-ificity: The paradox of statistical learning. Trends in Cognitive Sciences, 2015, 19(3), 117–125. DOI: 10.1016/j.tics.2014.12.010.

Frost R., Armstrong B.C., Christiansen M.H. Statistical learning research: A critical review and pos-sible new directions. Psychological Bulletin, 2019, 145(12), 1128. DOI: 10.1037/bul0000210.

Geyer T., Zehetleitner M., Müller H.J. Contextual cueing of pop-out visual search: When context guides the deployment of attention. Journal of Vision, 2010, 10(5), 20–20. DOI: 10.1167/10.5.20.

Goujon A., Didierjean A., Thorpe S. Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 2015, 19(9), 524–533. DOI: 10.1016/j.tics.2015.07.009.

Hall M.G., Mattingley J.B., Dux P.E. Distinct contributions of attention and working memory to vis-ual statistical learning and ensemble processing. Journal of Experimental Psychology: Human Percep-tion and Performance, 2015, 41(4), 1112. DOI: 10.1037/xhp0000069.

Herff S.A., Zhen S., Yu R., Agres K.R. Age-dependent statistical learning trajectories reveal differ-ences in information weighting. Psychology and Aging, 2020, 35(8), 1090–1104. DOI: 10.1037/pag0000567.

Himberger K.D., Finn A.S., Honey C.J. On the automaticity of visual statistical learning. bioRxiv, 2022, 07. DOI: 10.1101/2022.07.04.498716.

Jiang Y., Chun M.M. Selective attention modulates implicit learning. The Quarterly Journal of Exper-imental Psychology: Section A, 2001, 54(4), 1105–1124. DOI: 10.1080/713756001.

Jiang Y., Leung A.W. Implicit learning of ignored visual context. Psychonomic Bulletin and Review, 2005, 12, 100–106. DOI: 10.3758/BF03196353.

Jiang Y., Song J.H. Spatial context learning in visual search and change detection. Perception and Psychophysics, 2005, 67(7), 1128–1139. DOI: 10.3758/BF03193546.

Jiang Y.V., Swallow K.M. Spatial reference frame of incidentally learned attention. Cognition, 2013, 126(3), 378–390. DOI: 10.1016/j.cognition.2012.10.011.

Lee S.W., O’Doherty J.P., Shimojo S. Neural computations mediating one-shot learning in the human brain. PLoS biology, 2015, 13(4), e1002137. DOI: 10.1371/journal.pbio.1002137.

Lengyel G., Nagy M., Fiser J. Statistically defined visual chunks engage object-based attention. Na-ture communications, 2021, 12(1), 1–12. DOI: 10.1038/s41467-020-20589-z.

Li X., Zhao X., Shi W., Lu Y., Conway C.M. Lack of Cross-Modal Effects in Dual-Modality Implicit Statistical Learning. Frontiers in Psychology, 2018, 9, 146. DOI: 10.1016/j.cortex.2016.02.011.

Lleras A., Von Muhlenen A. Spatial context and top-down strategies in visual search. Spatial Vision, 2004, 17(4), 465–482. DOI: 10.1163/1568568041920113.

Machner B., Braun L., Imholz J., Koch P.J., Münte T.F., Helmchen C., Sprenger A. Resting-State Functional Connectivity in the Dorsal Attention Network Relates to Behavioral Performance in Spatial Attention Tasks and May Show Task-Related Adaptation. Frontiers in Human Neuroscience, 2022, 15, 757128. DOI: 10.3389/fnhum.2021.757128.

McKone E., Aimola Davies A., Fernando D., Aalders R., Leung H., Wickramariyaratne T., Platow, M.J. Asia has the global advantage: Race and visual attention. Vision Research, 2010, 50(16), 1540–1549. DOI: 10.1016/j.visres.2010.05.010.

Navon D. Forest before trees: The precedence of global features in visual perception. Cognitive Psy-chology, 1977, 9, 353-383. DOI: 10.1016/0010-0285(77)90012-3.

Newell B.R., Shanks D.R. Unconscious influences on decision making: A critical review. Behavioral and brain sciences, 2014, 37(1), 1-19. DOI: 10.1017/S0140525X12003214.

Nissen M.J., Bullemer P. Attentional requirements of learning: evidence from performance measures. Cognitive Psychology, 1987, 19(1), 1–32. DOI: 10.1016/0010-0285(87)90002-8.

Orbán G., Fiser J., Aslin R.N., Lengyel M. Bayesian learning of visual chunks by human observers. Proceedings of the National Academy of Sciences, 2008, 105(7), 2745–2750. DOI: 10.1073/pnas.0708424105.

Palmer S.D., Hutson J., Mattys S.L. Statistical learning for speech segmentation: Age-related changes and underlying mechanisms. Psychology and Aging, 2018, 33(7), 1035–1044. DOI: 10.1037/pag0000292.

Perruchet P., Pacton S. Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 2006, 10, 233–238. DOI: 10.1016/j.tics.2006.03.006.

Ramey M.M., Henderson J.M., Yonelinas A.P. The spatial distribution of attention predicts familiari-ty strength during encoding and retrieval. Journal of Experimental Psychology: General, 2020, 149(11), 2046–2062. DOI: 10.1037/xge0000758.

Rausei V., Makovski T., Jiang Y.V. Attention dependency in implicit learning of repeated search con-text. Quarterly Journal of Experimental Psychology, 2007, 60(10), 1321–1328. DOI: 10.1080/17470210701515744.

Rutar D., de Wolff E., Kwisthout J., Hunnius S. Statistical learning mechanisms are flexible and can adapt to structural input properties. 2022. Available at SSRN 4027230. DOI: 10.21203/rs.3.rs-2402303/v1.

Saffran J.R., Aslin R.N., Newport E.L. Statistical learning by 8-month-old infants. Science, 1996, 274, 1926–1928. DOI: 10.1126/science.274.5294.1926.

Saffran J.R., Johnson E.K., Aslin R.N., Newport E.L. Statistical learning of tone sequences by human infants and adults. Cognition, 1999, 70(1), 27–52. DOI: 10.1016/S0010-0277(98)00075-4.

Santolin C., Saffran J. Constraints on Statistical Learning Across Species. Trends in Cognitive Sci-ences, 2017, 22. DOI: 10.1016/j.tics.2017.10.003.

Scott R.B., Dienes Z. The conscious, the unconscious, and familiarity. Journal of experimental psy-chology. Learning, Memory, and Cognition, 2008, 34(5), 1264–1288. DOI: 10.1037/a0012943.

Schwarb H., Schumacher E.H. Generalized lessons about sequence learning from the study of the se-rial reaction time task. Advances in Cognitive Psychology, 2012, 8(2), 165-178. DOI: 10.2478/v10053-008-0113-1.

Sekimoto T., Motoyoshi I. Ensemble perception without phenomenal awareness of elements. Scien-tific Reports, 2022, 12(1), 1-8. DOI: 10.1038/s41598-022-15850-y.

Stevens W.D., Buckner R.L., Schacter D.L. Correlated low-frequency BOLD fluctuations in the rest-ing human brain are modulated by recent experience in category-preferential visual regions. Cerebral Cortex, 2010, 20(8), 1997-2006. DOI: 10.1093/cercor/bhp270.

Theeuwes J., Bogaerts L., van Moorselaar D. What to expect where and when: how statistical learn-ing drives visual selection. Trends in Cognitive Sciences, 2022, 26(10), 860-872. DOI: 10.1016/j.tics.2022.06.001.

Treisman A. How the deployment of attention determines what we see. Visual Cognition, 2006, 14(4-8), 411–443. DOI: 10.1080/13506280500195250.

Tummeltshammer K., Amso D., French R.M., Kirkham N.Z. Across space and time: Infants learn from backward and forward visual statistics. Developmental Science, 2017, 20(5), e12474. DOI:10.1111/desc.12474.

Turk-Browne N.B. Statistical learning and its consequences. The influence of attention, learning, and motivation on visual search. Springer, New York, NY, 2012. pp. 117-146. DOI: 10.1007/978-1-4614-4794-8_6.

Turk-Browne N.B., Jungé J., Scholl B.J. The automaticity of visual statistical learning. Journal of Ex-perimental Psychology: General, 2005, 134, 552–564. DOI: 10.1037/0096-3445.134.4.552.

Vickery T.J., Park S.H., Gupta J., Berryhill M.E. Tasks determine what is learned in visual statistical learning. Psychonomic Bulletin and Review, 2018, 25(5), 1847–1854. DOI: 10.3758/s13423-017-1405-6.

Wang W., Yonelinas A.P. Familiarity is related to conceptual implicit memory: An examination of individual differences. Psychonomic Bulletin and Review, 2012, 19, 1154–1164. DOI: 10.3758/s13423-012-0298-7.

Wierzchoń M., Asanowicz D., Paulewicz B., Cleeremans A. Subjective measures of consciousness in artificial grammar learning task. Consciousness and Cognition, 2012, 21(3), 1141-1153. DOI: 10.1016/j.concog.2012.05.012.

Whitney D., Yamanashi Leib A. Ensemble perception. Annual Review of Psychology, 2018, 69, 105-129. DOI: 10.1146/annurev-psych-010416-044232.

Yang Y., Coutinho M.V., Greene A.J., Hannula D.E. Contextual cueing is not flexible. Conscious-ness and Cognition, 2021, 93, 103164. DOI: 10.1016/j.concog.2021.103164.

Zang X., Assumpção L., Wu J., Xie X., Zinchenko A. Task-Irrelevant Context Learned Under Rapid Display Presentation: Selective Attention in Associative Blocking. Frontiers in Psychology, 2021, 12:675848. DOI: 10.3389/fpsyg.2021.675848.

Zhao J., Luo Y. Statistical regularities guide the spatial scale of attention. Attention, Perception, and Psychophysics, 2017, 79(1), 24-30. DOI: 10.3758/s13414-016-1233-1.

Zhao J., Ngo N., McKendrick R., Turk-Browne N.B. Mutual interference between statistical sum-mary perception and statistical learning. Psychological Science, 2011, 22(9), 1212-1219. DOI: 10.1177/0956797611419304.

Число просмотров

Просмотров: 193

Опубликован

17.07.2023

Как цитировать

Деева, Т. (2023). О режимах распределения внимания при усвоении визуальных пространственных закономерностей. Психологические исследования, 16(89), 7. https://doi.org/10.54359/ps.v16i89.1398

Выпуск

Раздел

Обзоры