Динамика хранения иерархических репрезентаций в зрительной рабочей памяти

Авторы

  • Владислав Хвостов Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

DOI:

https://doi.org/10.54359/ps.v15i82.1102

Ключевые слова:

иерархическое кодирование, зрительная рабочая память, сводная статистика ансамблей, забывание в рабочей памяти

Аннотация

Теория иерархического кодирования утверждает, что хранение объектов в зрительной рабочей памяти (ЗРП) не носит независимый характер. Наоборот – репрезентация каждого объекта является интеграцией информации об этом отдельном объекте и групповой информации обо всех запоминаемых объектах (например, среднем значении признака) [Brady & Alvarez, 2011]. Данное исследование направлено на изучение динамики хранения иерархических репрезентаций в ЗРП. Испытуемым на 500 мс предъявлялись четыре треугольника разной ориентации, и спустя 1\4\7 секунд удержания в памяти они должны были отчитаться об ориентации одного из треугольников или о средней ориентации всех фигур. Перед началом предъявления давалась подсказка, сообщающая об ориентации, подлежащей запоминанию: одного треугольника, всех четырёх или средней ориентации. С помощью модели смешения оценивалась вероятность нахождения репрезентации в памяти, ее точность и смещение к среднему признаку. Не было обнаружено различий в динамике хранения отдельных элементов иерархической репрезентации (среднего и индивидуальных значений), что свидетельствует в пользу предположения о том, что формирование иерархических репрезентаций в ЗРП связано с особым кодированием материала, а не с особенностями процесса хранения разных частей иерархической репрезентации. Точность и вероятность нахождения репрезентации в памяти снижались со временем, что свидетельствует об одновременном действии процессов «угасания» и «внезапной смерти» в ЗРП.

Скачивания

Данные скачивания пока недоступны.

Автор

Владислав Хвостов, Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

Магистр психологических наук, аспирант школы психологии НИУ «Высшая школа экономики», младший научный сотрудник научно-учебной лаборатории когнитивных исследований НИУ ВШЭ, приглашенный преподаватель департамента психологии НИУ ВШЭ, Армянский переулок, 4 стр. 2, 101100 Москва, Россия.

Литература

Utochkin, I.S., YUrevich, M.A., & Bulatova, M.E. (2016). Zritel'naya rabochaya pamyat': Metody, issledovaniya, teorii. Rossijskij ZHurnal Kognitivnoj Nauki, 3(3), 58–76.

Alloway, T.P. & Alloway, R.G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003.

Alvarez, G.A. & Cavanagh, P. (2004). The Capacity of Visual Short-Term Memory is Set Both by Visual Information Load and by Number of Objects. Psychological Science, 15(2), 106–111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x.

Ariely, D. (2001). Seeing Sets: Representation by Statistical Properties. Psychological Science, 12(2), 157–162. https://doi.org/10.1111/1467-9280.00327.

Astle, D.E., Summerfield, J., Griffin, I., & Nobre, A.C. (2012). Orienting attention to locations in mental representations. Attention, Perception, & Psychophysics, 74(1), 146–162. https://doi.org/10.3758/s13414-011-0218-3.

Awh, E., Barton, B., & Vogel, E.K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.

Baddeley, A. (1986). Working memory Oxford: Clarendon.

Bays, P.M. (2014). Noise in neural populations accounts for errors in working memory. Journal of Neuroscience, 34(10), 3632–3645.

Bays, P.M. (2015). Spikes not slots: Noise in neural populations limits working memory. Trends in Cognitive Sciences, 19(8), 431–438.

Bays, P.M., Catalao, R.F.G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7–7. https://doi.org/10.1167/9.10.7.

Bays, P.M., & Husain, M. (2008). Dynamic Shifts of Limited Working Memory Resources in Hu-man Vision. Science, 321(5890), 851–854. https://doi.org/10.1126/science.1158023.

Berryhill, M.E., Richmond, L.L., Shay, C.S., & Olson, I.R. (2012). Shifting Attention among Work-ing Memory Representations: Testing Cue Type, Awareness, and Strategic Control. Quarterly Jour-nal of Experimental Psychology, 65(3), 426–438. https://doi.org/10.1080/17470218.2011.604786.

Brady, T.F., & Alvarez, G.A. (2011). Hierarchical Encoding in Visual Working Memory: Ensemble Statistics Bias Memory for Individual Items. Psychological Science, 22(3), 384–392. https://doi.org/10.1177/0956797610397956.

Brady, T.F., & Alvarez, G.A. (2015a). No evidence for a fixed object limit in working memory: Spa-tial ensemble representations inflate estimates of working memory capacity for complex objects. Jour-nal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921–929. https://doi.org/10.1037/xlm0000075.

Brady, T.F., & Alvarez, G.A. (2015b). Contextual effects in visual working memory reveal hierarchi-cally structured memory representations. Journal of Vision, 15(15), 6. https://doi.org/10.1167/15.15.6.

Brady, T.F., Konkle, T., & Alvarez, G.A. (2011). A review of visual memory capacity: Beyond indi-vidual items and toward structured representations. Journal of Vision, 11(5), 4–4. https://doi.org/10.1167/11.5.4.

Brady, T.F., & Tenenbaum, J.B. (2013). A probabilistic model of visual working memory: Incorpo-rating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85–109. https://doi.org/10.1037/a0030779.

Buschman, T.J., Siegel, M., Roy, J.E., & Miller, E.K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11252–11255.

Chong, S.C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43(4), 393–404. https://doi.org/10.1016/s0042-6989(02)00596-5.

Chong, S.C., & Treisman, A. (2005a). Attentional spread in the statistical processing of visual dis-plays. Perception & Psychophysics, 67(1), 1–13. https://doi.org/10.3758/BF03195009.

Chong, S.C., & Treisman, A. (2005b). Statistical processing: Computing the average size in perceptu-al groups. Vision Research, 45(7), 891–900. https://doi.org/10.1016/j.visres.2004.10.004.

Constantinidis, C., & Wang, X.-J. (2004). A neural circuit basis for spatial working memory. The Neuroscientist, 10(6), 553–565.

Corbin, J.C., & Crawford, L.E. (2018). Biased by the Group: Memory for an Emotional Expression Biases Towards the Ensemble. Collabra: Psychology, 4(1). https://doi.org/10.1525/collabra.186.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/S0140525X01003922.

Dubé, C., Zhou, F., Kahana, M.J., & Sekuler, R. (2014). Similarity-based distortion of visual short-term memory is due to perceptual averaging. Vision Research, 96, 8–16. https://doi.org/10.1016/j.visres.2013.12.016.

Griffiths, S., Rhodes, G., Jeffery, L., Palermo, R., & Neumann, M.F. (2018). The average facial ex-pression of a crowd influences impressions of individual expressions. Journal of Experimental Psy-chology: Human Perception and Performance, 44(2), 311–319. https://doi.org/10.1037/xhp0000446.

Huang, L. (2010). Characterizing the nature of visual conscious access: The distinction between fea-tures and locations. Journal of Vision, 10(10), 24–24. https://doi.org/10.1167/10.10.24.

Im, H.Y., & Halberda, J. (2013). The effects of sampling and internal noise on the representation of ensemble average size. Attention, Perception, & Psychophysics, 75(2), 278–286. https://doi.org/10.3758/s13414-012-0399-4.

Khvostov, V., Utochkin, I., & Brady, T. (2020). Hierarchical representations in visual working memory are space-based. Journal of Vision, 20(11), 351. https://doi.org/10.1167/jov.20.11.351.

Lee, B., & Harris, J. (1996). Contrast Transfer Characteristics of Visual Short-term Memory. Vision Research, 36(14), 2159–2166. https://doi.org/10.1016/0042-6989(95)00271-5.

Luck, S.J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunc-tions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846.

Luck, S.J., & Vogel, E.K. (2013). Visual working memory capacity: From psychophysics and neuro-biology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400. https://doi.org/10.1016/j.tics.2013.06.006.

Ma, W.J., Husain, M., & Bays, P.M. (2014). Changing concepts of working memory. Nature Neuro-science, 17(3), 347–356. https://doi.org/10.1038/nn.3655.

Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158.

Peirce, J., Gray, J.R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lin-deløv, J.K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y.

Pertzov, Y., Bays, P.M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospec-tive attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1224–1231. https://doi.org/10.1037/a0030947.

Raffone, A., & Wolters, G. (2001). A Cortical Mechanism for Binding in Visual Working Memory. Journal of Cognitive Neuroscience, 13(6), 766–785. https://doi.org/10.1162/08989290152541430.

Ricker, T.J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(6), 1355–1368. https://doi.org/10.1037/a0020356.

Ricker, T.J., Spiegel, L.R., & Cowan, N. (2014). Time-based loss in visual short-term memory is from trace decay, not temporal distinctiveness. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1510–1523. https://doi.org/10.1037/xlm0000018.

Schurgin, M.W. (2018). Visual memory, the long and the short of it: A review of visual working memory and long-term memory. Attention, Perception, & Psychophysics, 80(5), 1035–1056. https://doi.org/10.3758/s13414-018-1522-y.

Sprague, T.C., Ester, E.F., & Serences, J.T. (2014). Reconstructions of information in visual spatial working memory degrade with memory load. Current Biology, 24(18), 2174–2180.

Utochkin, I.S., & Brady, T.F. (2020). Independent storage of different features of real-world objects in long-term memory. Journal of Experimental Psychology: General, 149(3), 530–549. https://doi.org/10.1037/xge0000664.

Utochkin, I.S., & Tiurina, N.A. (2014). Parallel averaging of size is possible but range-limited: A re-ply to Marchant, Simons, and De Fockert. Acta Psychologica, 146, 7–18. https://doi.org/10.1016/j.actpsy.2013.11.012.

Whitney, D., & Yamanashi Leib, A. (2018). Ensemble Perception. Annual Review of Psychology, 69, 105–129. https://doi.org/10.1146/annurev-psych-010416-044232.

Wilken, P., & Ma, W.J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11. https://doi.org/10.1167/4.12.11.

Zhang, W., & Luck, S.J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. https://doi.org/10.1038/nature06860.

Zhang, W., & Luck, S.J. (2009). Sudden Death and Gradual Decay in Visual Working Memory. Psy-chological Science, 20(4), 423–428. https://doi.org/10.1111/j.1467-9280.2009.02322.x.

Число просмотров

Просмотров: 28

Опубликован

30.04.2022

Как цитировать

Хвостов, В. (2022). Динамика хранения иерархических репрезентаций в зрительной рабочей памяти. Психологические исследования, 15(82), 7. https://doi.org/10.54359/ps.v15i82.1102

Выпуск

Раздел

Экспериментальные и эмпирические исследования