Разработка и психометрический анализ шкалы толерантности к коррупции
DOI:
https://doi.org/10.54359/ps.v17i95.1592Ключевые слова:
коррупция, психология коррупции, психометрические свойства, шкала толерантности к коррупцииАннотация
Целью предлагаемого исследования стало изучение психометрических свойств разработанной шкалы толерантности к коррупции. Для этого было проведено анкетирование экспертов, с тем чтобы исследовать содержательную валидность получаемых результатов. На выборке исследования № 1 из 404 респондентов была изучена надежность, структура, инвариантность методики и ее взаимосвязь со шкалами амбивалентного отношения к мужчинам. На отдельной выборке исследования № 2, состоящей из 100 студентов факультетов экономики и психологии, изучена критериальная и дивергентная валидность результатов. По итогам анализа выяснилось, что шкала обладает приемлемыми свойствами, высокой различительной способностью. Было показано, что для минимизации ошибки измерения лучше использовать полную шкалу толерантности к коррупции, хотя субшкалы также возможно применять в исследовательских целях. В заключение предложены варианты дальнейшей работы по валидизации предлагаемого инструмента.
Скачивания
Литература
Alarcón D., Sánchez J.A., De Olavide U. Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Compo-site Reliability (CR), and Heterotrait-Monotrait ratio of correlations (HTMT). Spanish STATA Meet-ing, 2015, 1–39.
American Educational Research Association, American Psychological Association, National Council on Measurement in Education, Joint Committee on Standards for Educational, Psychological Testing (US). Standards for educational and psychological testing, 1999.
Barnes T.D., Beaulieu E., Saxton G.W. Restoring trust in the police: Why female officers reduce sus-picions of corruption. Governance, 2018, No. 31(1), 143–161. DOI: 10.1111/gove.12281
Bazaldua D.A.L., Lee Y.S., Keller B., Fellers L. Assessing the performance of classical test theory item discrimination estimators in Monte Carlo simulations. Asia Pacific Education Review, 2017, No. 18(4), 585–598. DOI: 10.1007/s12564-017-9507-4
Bono R., Blanca M.J., Arnau J., Gómez-Benito J. Non-normal Distributions Commonly Used in Health, Education, and Social Sciences: A Systematic Review. Frontiers in Psychology., 2017, No. 8(1602). DOI: 10.3389/fpsyg.2017.01602
Brennan R.L., Prediger D.J. Coefficient kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement, 1981, No. 41(3), 687–699. DOI: 10.1177/001316448104100
Campbell D.T., Fiske D.W. Convergent and discriminant validation by the multitrait-multimethod ma-trix. Psychological Bulletin, 1959, No. 56(2), 81–105. DOI: 10.1037/h0046016
Crocker L.M., Algina J. Introduction to classical and modern test theory. – New York, NY: Holt, Rinehart and Winston, 1986, 527 p.
Dawis R.V. Scale construction. Journal of Counseling Psychology, 1987, No. 34(4), 481–489. DOI: 10.1037/0022-0167.34.4.481
De Roover K., Timmerman M.E., De Leersnyder J., Mesquita B., Ceulemans E. What's hampering measurement invariance: detecting non-invariant items using clusterwise simultaneous component analysis. Frontiers in Psychology, 2014, No. 5(604). DOI: 10.3389/fpsyg.2014.00604
Einhorn H.J. Expert judgment: Some necessary conditions and an example. Journal of Applied Psy-chology, 1974, No. 59(5), 562–571. DOI: 10.1037/h0037164
Epskamp S. semPlot: Path diagrams and visual analysis of various SEM packages’ output (Version 1.0. 0). 2014. URL: https://CRAN.R-project.org/package=semPlot (Accessed: 10.05.2024)
Fornell C., Larcker D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics, 1981. DOI: 10.2307/3150980
Frank B., Schulze G.G. Does economics make citizens corrupt? Journal of Economic Behavior & Or-ganization, 2000, No. 43(1), 101–113. DOI: 10.1016/S0167-2681(00)00111-6
Glick P., Lameiras M., Fiske S.T., Eckes T., Masser B., Volpato C., Castro Y.R. Bad but bold: Am-bivalent attitudes toward men predict gender inequality in 16 nations. Journal of Personality and So-cial Psychology,2004, No. 86(5), 713–728. DOI: 10.1037/0022-3514.86.5.713
Gong T., Wang S. Indicators and Implications of Zero Tolerance of Corruption: The Case of Hong Kong. Social Indicators Research, 2013, No. 3(112), 569–586. DOI: 10.1007/s11205-012-0071-3
Gwet K.L. Handbook of inter-rater reliability: The definitive guide to measuring the extent of agree-ment among raters. Advanced Analytics, 2014. URL: https://www.agreestat.com/book4/9780970806284_prelim_chapter1.pdf (Accessed: 10.05.2024)
Hair J.E., Back W.C. Babin B.J., Rolph E.A. Multivariate data analysis (7th edition). – USA: Pear-son, 2010, 816 p.
Jöreskog K.G. A general approach to confirmatory maximum likelihood factor analysis. Psy-chometrika, 1969, No. 34(2), 183–202. DOI: 10.1007/BF02289343
Jorgensen T.D., Pornprasertmanit S., Schoemann A.M. Rosseel Y. semTools: Useful Tools for Structural Equation Modeling, 2019. URL: https://CRAN.R-project.org/package=semTools (Ac-cessed: 10.05.2024)
Kheyami D., Jaradat A., Al-Shibani T., Ali F.A. Item Analysis of Multiple Choice Questions at the Department of Paediatrics, Arabian Gulf University, Manama, Bahrain. Sultan Qaboos University Medical Journal, 2018, No. 18(1), 68–74.
Kline R. Principles and Practice of Structural Equation Modeling (3rd edition). – Guilford Press, New York, 2011.
Krivoshchekov V.S., Gulevich O.A., Lyubkina A.S. Hostile and Benevolent Attitudes toward Men: Psychometric Properties of the Russian Version of the Ambivalence toward Men Inventory. Psiho-logiya. ZHurnal Vysshej shkoly ekonomiki, 2018, No. 15(3), 427–446.
Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics, 1977, 159–174.
León C.J., Araña J.E., de León J. Correcting for Scale Perception Bias in Measuring Corruption: an Application to Chile and Spain. Social Indicators Research, 2013, No. 114(3), 977–995. DOI: 10.1007/s11205-012-0185-7
Mair P., Wilcox R. Robust statistical methods in R using the WRS2 package. Behavior Research Methods, 2020, No. 52(2), 464–488. DOI: 10.3758/s13428-019-01246-w
Mishra A., Mookherjee D. Controlling Collusion and Extortion: The Twin Faces of Corruption. 2012. URL: https://people.bu.edu/dilipm/wkpap/Collusion%20and%20Extortion%20(MM)(3).pdf (Accessed: 10.05.2024)
Nisnevich Yu.A., Shuhova A.A., Stukal D.K. Metodologicheskie problemy izmereniya korrup-cii. Obshchestvennye nauki i sovremennost', 2016, No. 3, 149–162.
Olsson U., Drasgow F., Dorans N.J. The polyserial correlation coefficient. Psychometrika, 1982, No. 47(3), 337–347. DOI: 10.1007/BF02294164
Quarfoot D., Levine R.A. How robust are multirater interrater reliability indices to changes in fre-quency distribution? The American Statistician, 2016, No. 70(4), 373–384. DOI: 10.1080/00031305.2016.1141708
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. – Vienna, Austria. R Foundation for Statistical Computing, 2017.
Raykov T. Estimation of composite reliability for congeneric measures. Applied Psychological Meas-urement, 1997, No. 21(2), 173–184. DOI: 10.1177/014662169702120
Revelle W. psych: Procedures for psychological, psychometric, and personality research. – North-western University, Evanston, Illinois, 2014, 165, 1–10.
Rhemtulla M., Brosseau-Liard P.É., Savalei V. When can categorical variables be treated as continu-ous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 2012, No. 17(3), 354–373. DOI: 10.1037/a0029315
Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BE-TA). Journal of Statistical Software, 2012, No. 48(2), 1–36. DOI: 10.18637/jss.v048.i02
Svetina D., Rutkowski L., Rutkowski D. Multiple-group invariance with categorical outcomes using updated guidelines: An illustration using M plus and the lavaan/semtools packages. Structural Equa-tion Modeling: A Multidisciplinary Journal, 2020, No. 27(1), 111–130. DOI: 10.1080/10705511.2019.1602776
Tan X., Liu L., Zheng, W., Huang Z. Effects of social dominance orientation and right‐wing authori-tarianism on corrupt intention: The role of moral outrage. International Journal of Psychology, 2016, No. 3(51), 213–219. DOI: 10.1002/ijop.12148
Zhao H., Zhang H., Xu, Y. Does the Dark Triad of Personality Predict Corrupt Intention? The Medi-ating Role of Belief in Good Luck. Frontiers in Psychology, 2016, No. 7(608). DOI: 10.3389/fpsyg.2016.00608
Zhuravlev A.L., Yurevich A.V. Psihologicheskie faktory korrupcii. Psihologiya v ekonomike i uprav-lenii, 2012, No. 1, 57–65.
Zhuravleva T.L., Sukhov S.V. Laboratornye eksperimenty kak metod izucheniya korrupcii: ob-zor is-sledovanij. Ekonomicheskij zhurnal VSHE, 2016, No. 20(2), 243–267.
Загрузки
Число просмотров
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.